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rowing further suggests that an attractive interaction exists be­
tween the phosphine side arms and the fullerene. 

In summary, this work shows that the guest/host nature of 
fullerene/phenyl interactions can be chemically manipulated to 
produce novel solid-state aggregates. The phenyl-X-Y-phenyl 
unit (X, Y are first row atoms) has the proper geometry to chelate 
a portion of C60. 
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One-electron oxidation (hole formation) is increasingly being 
exploited as a fundamental option for activating molecules toward 
synthetically useful chemistry mediated by cation radicals.1-5 In 
the context of multifunctional molecules, reactivity can be spe­
cifically directed to the most oxidizable functionality through the 
use of mild hole-transfer agents such as tris(4-bromophenyl)-
aminium hexachloroantimonate (1,+) (Chart I). This strategy 
has recently been used to develop an efficient epoxidation pro­
cedure in which selectivity is based solely upon, and is highly 
sensitive to, relative oxidizability.6 The present communication 
describes a similarly selective method for the dihydrogenation of 
relatively oxidizable (Em < 1.5 V) functionalities, including 
conjugated dienes, styrenes, electron-rich alkenes, aromatics, and 
even strained a bonds. 

The reduction of an alkene cation radical to an alkane formally 
requires the transfer of one hydrogen atom and one hydride ion 
to the cation radical. The hydrogen-transfer agents found most 
effective in this work were tributyltin hydride (2a) and triphenyltin 
hydride (2b). The concept of promoting alkene reduction by initial 
one-electron oxidation is illustrated by the reduction of 1,1-di-
phenylethene (3a, E^ = 1.22 V, Scheme I, 90% yield). The 
important mechanistic issue of the sequence of hydrogen atom 
and hydride transfer, i.e., whether the initial product of hydrogen 
transfer is a carbocation or a free radical, has not yet been resolved 
but is currently under investigation. The ability of V+ to ionize 
3a under the present reaction conditions has previously been 
established, and the generation of 3a'+ is further confirmed by 
the observation of minor amounts of the cyclodimer of 3a in the 
product.6 A major substituent effect appropriate to the ionization 
of 3a is suggested by the complete unreactivity of the corresponding 
/>,p'-dichloro derivative (3b) during a reaction time of 1 h. In 
contrast to both 3a and 3b, thep,p -dimethoxy derivative (3c) was 
completely reduced within 1 min (93%). A quantitative study 
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of the competitive reduction of 3a and its corresponding 4,4'-
dimethyl derivative (3d) revealed a relative reaction rate of 1:167, 
corresponding to a p value of ca. -7.2 (using ap

+) or -3.6 (using 
,To-P+). A p value of -4.0 per aryl ring has been found to cor­
respond to full carbocation formation in the equilibrium proton-
ation of 1,1-diarylethenes.7 The possibility of a Bronsted acid 
catalyzed mechanism is ruled out by the observation that excess 
2,6-di-fer/-butylpyridine fails to suppress the reaction.1^2,8 

Moreover, the reduction of 2,4-dimethyl-l,3-pentadiene yields, 
as a byproduct, the cyclodimer resulting from hole transfer cat­
alyzed Diels-Alder cycloaddition but none of the acid-catalyzed 
cyclodimerization product.1'2 Similarly, the hydrogenations of 
1,3-cyclohexadiene and l,l'-bicyclohexenyl also yield the well-
known hole transfer catalyzed cyclodimers as byproducts.1,2 

In the case of franj-anethole (4), hole transfer catalyzed cy­
clodimerization strongly predominates, affording the cyclo-
butadimer (5).9 However, 5 is also readily oxidizable, and the 
proposed long bond9,10 of 5*+ is then reductively cleaved to afford 
6 (80%). The dihydrogenation of 4 was achieved, nevertheless, 
by using the more reactive triphenyltin hydride (2b) as the re-
ductant (55%). The selectivity of hole transfer promoted hy­
drogenation is illustrated by the reduction of 7, which occurs 
exclusively at the more ionizable double bond (95% yield). Simple 
double bonds such as those in norbornene and 1-octene are not 
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amenable to reduction via this method. 
The reduction of conjugated dienes is illustrated with 8 and 

9. The sole product of the reduction of 8 is cyclohexenylidene-
cyclohexane (90%), corresponding to exclusive 1,4-di-
hydrogenation. However, 9 yields trans-1,4-diphenyl-2-butene 
and f/ww-l,4-diphenyl-l-butene in the ratio 2:1 (75%). 

A very attractive ancillary feature of hole transfer promoted 
hydrogenation is the absence of hydrogenolysis, even of carbon-
sulfur bonds. The reduction of 10 is efficient (88%), and the 
retention of the phenylthio function clearly contrasts with catalytic 
hydrogenation. Reduction of suitably ionizable aromatics is also 
feasible. Anthracene affords 9,10-dihydroanthracene (70%), but 
less ionizable substrates (phenanthrene, naphthalene) are inert. 

Hole transfer promoted hydrogenation is experimentally con­
venient," and the required reagents (l '+ , 2a,b) are readily 
available. The unique and superior selectivity characteristics of 
the reaction suggest potential synthetic utility. Mechanistically, 
the intervention of cation radical intermediates is strongly sup­
ported, but the likely subsequent involvement of carbocations 
and/or radicals remains to be established. 
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The design of peptides and proteins requires an understanding 
of the features that stabilize protein secondary, tertiary, and 
quaternary structures.1 Toward this goal we have developed a 
model, two-stranded, coiled-coil peptide that allows one to de­
termine the contributions of individual amino acids to the stability 
of a-helices2 (Figure 1). This peptide adopts a random coil as 
a monomer in dilute aqueous solution, but forms a-helical dimers 
in more concentrated solution. The free energy of dimerization, 
AC1Ji1n,

 c a n be determined by measuring the concentration de­
pendence of a-helix formation as monitored by circular dichroism 
(CD). Systematic changes on the solvent-exposed face of the 
helices are then made and the resulting changes in <\G°iim 
measured. These changes can be interpreted in terms of their 
effect on a-helix formation, an obligatory step in dimerization.2 
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peptides used in the current study, Ac-EWEALEKKLAALE-(Xxx)-
K L Q A L E K K L E A L E H G - C O N H 2 (XXX = D-AIa, L-AIa, or GIy), were pre­
pared as described in the original publication or by a modification of this 
procedure. 

Ac-EWEALEKKLAALE-(D-AIa)-KLQALEKKLEALEHG-CNH2 

Figure 1. Helical wheel representation of the heptapeptide repeating unit 
used in the design of the helical pair. The sequence of the model peptide 
is shown at the bottom. 

[Urea] (M) 

Figure 2. Urea denaturations of the L-AIa peptide (•), GIy peptide (•), 
and D-AIa peptide (O). [B]2I2 was measured as described previously.2 

The helical contents of the peptides in the absence of urea are the same 
within experimental error (-34000 ± 2000 deg cm2 dmol"1) Inset: 
Peptide concentration dependence2 for the D-AIa peptide as measured by 
CD. FN represents the fraction of coiled coil dimer as calculated from 
Wi22- The fitted curve, describing a simple monomer-dimer equilibrium, 
was generated using MLAB (Civilised Software, Inc., Bethesda, MD). 

In this paper, we investigate the effect of substituting D-AIa into 
our model system. Although D amino acids are used widely in 
peptides, their effect on the free energy of forming a right-handed 
a-helix has been unknown. 

The model peptide described previously2 was prepared with 
D-AIa in the guest site. In aqueous solution, the peptide has a 
CD spectrum with minima at 208 and 222 nm and a maximum 
at 192 nm, predictive of a right-handed a-helix. Figure 2 illustrates 
[8] 222 (a measure of the handedness and extent of a-helix for­
mation) versus [urea] for peptides with GIy, L-AIa, and D-AIa at 
the guest position. Similar to GIy, D-AIa is destabilizing relative 
to L-AIa. AC1Jin, was obtained from the concentration dependence 
°f [0h22 (Figure 2, inset), and AAG0 was found to be unfavorable 
by 0.95 kcal/mol for D-AIa as compared to 0.77 kcal/mol for GIy, 
with L-AIa as the standard. 

Several features probably account for the destabilizing effect 
of D-AIa relative to L-AIa. The backbone angles available to D-AIa 
in the right-handed a-helical portion of the </>, \p map are more 
restricted and of higher energy than for L-AIa. Also, there are 
unfavorable steric interactions between the Cs of D-AIa at position 
i and the carbonyl oxygen atoms from residues i and i - 1 in a 
right-handed a-helix.3 

Hermans and co-workers3 have recently determined similar 
values for AAG0 between GIy, L-AIa, and D-AIa using pertur-
bational molecular dynamics (AAG0 values for GIy and D-AIa 
are 1.1 and 1.2 kcal/mol, respectively, with L-AIa as the standard 
state). These theoretical values are in good agreement with our 
experimental results, given the large differences in the two 
methods. 
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